SEBA Class 10 Maths Solution: Exercise 1.1 (Real Numbers) | SEBA অনুশীলনী ১.১ সমাধা
Are you looking for the complete step-by-step solutions for SEBA Class 10 Mathematics Chapter 1 (Real Numbers)? In this guide, we provide detailed answers for SEBA Exercise 1.1 in both English and Assamese medium.
Exercise 1.1 Solutions (English Medium)
(i) 135 and 225
Since 225 > 135, we apply Euclid's division lemma:
225 = 135 × 1 + 90
135 = 90 × 1 + 45
90 = 45 × 2 + 0
The remainder is 0. The divisor at this stage is 45.
Answer: HCF = 45
(ii) 196 and 38220
38220 = 196 × 195 + 0
Answer: HCF = 196
(iii) 867 and 255
867 = 255 × 3 + 102
255 = 102 × 2 + 51
102 = 51 × 2 + 0
Answer: HCF = 51
Let a be any positive odd integer and b = 6. Possible remainders are 0, 1, 2, 3, 4, 5.
So a can be 6q, 6q+1, 6q+2, 6q+3, 6q+4, 6q+5.
However, 6q, 6q+2, and 6q+4 are even (divisible by 2). Since a is odd, it must be in the form:
6q + 1, 6q + 3, or 6q + 5.
We need to find HCF(616, 32).
616 = 32 × 19 + 8
32 = 8 × 4 + 0
Answer: Maximum 8 columns.
Let integer be x and b = 3. x can be 3q, 3q+1, 3q+2.
- If x = 3q → x² = 9q² = 3(3q²) = 3m
- If x = 3q+1 → x² = (3q+1)² = 9q² + 6q + 1 = 3(3q²+2q) + 1 = 3m + 1
- If x = 3q+2 → x² = (3q+2)² = 9q² + 12q + 4 = 3(3q²+4q+1) + 1 = 3m + 1
Find HCF of 64 and 80.
80 = 64 × 1 + 16
64 = 16 × 4 + 0
Answer: 16 cm
SEBA Class 10 Maths Exercise 1.1 Solutions (অসমীয়া মাধ্যম)
(i) 135 আৰু 225
225 = 135 × 1 + 90
135 = 90 × 1 + 45
90 = 45 × 2 + 0
উত্তৰ: গ.সা.উ. = 45
(iii) 867 আৰু 255
867 = 255 × 3 + 102
255 = 102 × 2 + 51
102 = 51 × 2 + 0
উত্তৰ: গ.সা.উ. = 51
ধৰা হ'ল a যিকোনো এটা যোগাত্মক অযুগ্ম অখণ্ড সংখ্যা আৰু b = 6।
ভাগশেষ r = 0, 1, 2, 3, 4, 5 হ'ব পাৰে।
কিন্তু 6q, 6q+2, 6q+4 হ'ল যুগ্ম সংখ্যা। যিহেতু a অযুগ্ম, গতিকে ই কেৱল 6q + 1, 6q + 3 বা 6q + 5 আৰ্হিৰ হ'ব।
616 = 32 × 19 + 8
32 = 8 × 4 + 0
উত্তৰ: 8 টা স্তম্ভ।
64 আৰু 80 ৰ গ.সা.উ. উলিয়াব লাগিব।
80 = 64 × 1 + 16
64 = 16 × 4 + 0
উত্তৰ: 16 ছে.মি.
Download Full Solutions PDF
Get the offline version of these solutions for free.
Join the conversation